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ABSTRACT

We show the architecture and design of a numeric
function generator that realizes, at high speed, arith-
metic functions, like log x, sin x, 1

x , etc.. This ap-
proach is general; different circuits are not needed
for different functions. Further, composite functions,
like log (sin ( 1

x )) can be realized as easily as individ-
ual functions. A tutorial description of the method
is presented, followed by descriptions of the design
considerations that must be made. For example, we
discuss how circuit complexity increases as the desired
approximation error decreases. Also, we discuss en-
hancements of the basic numeric function generator
approach, including higher order polynomial approxi-
mations, floating point, and multi-variable implemen-
tations.

1. INTRODUCTION

The realization of arithmetic functions like sin x,
log x, and 1

x with high-speed and accuracy has been
an important problem since the beginning of comput-
ers. More than 150 years ago, Babbage devised a me-
chanical computer for computing tables of logarithms
and triginometric functions, in his difference machine.
Although he never completed his machine, one was
completed at the The Science Museum in London,
U.K. in 1991 using his plans. A second machine was
completed and was on display at the Computer His-
tory Museum in Mountain View, CA [3]. In the time
of Babbage, the critical application was navigation.
It has been suggested that sailors lost their lives due
to errors in tables used for navigation [7], which, at
that time, depended on human calculation.

Fifty years ago, Volder [16] introduced the
CORDIC algorithm for computing logarithmic and
trigonometric functions. In this iterative algorithm,
successively more accurate bits are computed until
the desired accuracy is achieved [1]. The advantage
of CORDIC is the relatively modest amount of hard-
ware needed [1]. Indeed, it has been used in hand
calculators, beginning in 1972 with Hewlett-Packard’s
HP-35 [2]. The CORDIC algorithm was also used in
Intel’s 8087 numeric co-processor [13].

By some measures, the CORDIC algorithm is still
fast. It may be implemented in a pipeline, where each

Memory

x

f(x)

f(x)

xAddress

D
a
ta

Fig. 1. Single Memory Implementation of f(x).

stage quickly computes one bit of the result. Typi-
cally, the latency or number of clocks needed to com-
pute the entire result is large because of the need to
compute successively more accurate bits. If the sys-
tem in which a CORDIC algorithm computation is
embedded is itself a pipeline, this may be acceptable.
In a hand calculator, computation speed need not be
high because of much slower speed by which a human
can input digits.

Thus, CORDIC achieves high-throughput, but has
high latency. In order to achieve low-latency and
high-throughput, one can use a simple memory, as
shown in Fig. 1. In this realization, a binary en-
coding of x is applied to the address inputs of the
memory. The output is the value stored at this ad-
dress; it is an encoding of the value of the realized
function f(x). Table I shows the required memory
as a function of the number of bits n used to realize
x and f(x). For n = 8 and 16 bits, memory size is
modest. In this case, the single memory approach is

TABLE I
Memory Size of the Lookup Table Implementation of

Numeric Function Generators

No. of Bits No. of Bits Memory Size
for x and f(x) in Address in Bytes

8 8 256
16 16 131,072
32 32 1.718× 1010

(17 Gigabytes)
64 64 1.476× 1020

128 128 5.445× 1039
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Fig. 2. Architecture of a Numerical Function Generator Using a
Piecewise Polynomial Approximation.

a reasonable implementation. For n = 32 bits, 17 Gi-
gabytes are needed, which is large. For n = 64 and
128 bits, the memory size exceeds by a large margin
today’s technology capabilities.

2. A PIECEWISE LINEAR APPROACH TO
REALIZING NUMERIC FUNCTIONS

Fig. 2a) shows the architecture of a numeric func-
tion generator that realizes a given numeric function
as a piecewise linear approximation. This is is based
on a tabular approach to realizing numeric functions
[6]. The input x drives a segment index encoder which
produces an index of the segment in which the value
of x falls. Within this segment, the function is re-
alized as a line c1x + c0. The values c1 and c0 are
outputs of the memory. They drive a circuit that re-
alizes f(x) = c1x + c0. Sasao, Butler, and Riedel
[14] show that the segment index encoder is tractably
realized as a look-up table (LUT) cascade.

Fig. 3 shows how the memory size depends with the
approximation error for the sin(πx) function, where
0 ≤ x ≤ 1/2. Plotted vertically is the log2 of the
number of segments versus log2 of the approximation
error. Smaller approximation error values are on the
left and larger approximation error values are on the
right. The top line, labeled Constant (analytical), cor-
responds to a constant approximation, in which the
approximating line is horizontal. It corresponds to a
memory output for c1 equal to 0. In this case, a mul-
tiplier is not needed, which is a source of much delay
in the circuit. Note, however, that a large number of
segments are needed.

The next line, labeled Power of 2 Slope (analyti-
cal), shows the number of segments needed in the case
where c1 is restricted to be a power of 2. In this case,
the multiplier is a shift operation. As such, there is
some delay, but not as much as with a full multiplier.
The number of segments is smaller, but still large.

The third line, labeled Douglas-Peucker (experimen-
tal), shows the number of segments associated with
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Fig. 3. Number of Segments Versus Approximation Error for
sin πx, Where 0 ≤ x ≤ 1/2.

the circuit shown in Fig. 2a) when the Douglas-
Peucker algorithm [4] is used is determine the seg-
ments. This is a heuristic in which segments are de-
termined iteratively. First, one line is used to approxi-
mate the whole domain. Then, the point of maximum
error is used to partition the domain into two parts,
etc.. This process is repeated until the maximum er-
ror is not greater than the desired error over the whole
domain.

The bottom line, labeled Unrestricted Slope (experi-
mental), shows the number of segments when the seg-
mentation is optimum. This shows that the Douglas-
Peucker algorithm is close to optimum, while the con-
stant slope and power of 2 slope are far from optimum.

The circuit in Fig. 2a) is said to realize a non-
uniform segmentation. Fig. 2b) shows the architec-
ture of a numeric function generator that realizes a
given numeric function as a piecewise linear approx-
imation in which all of the segment widths are the
same. This architecture realizes uniform segmenta-
tion. Normally, a segment index encoder would also
be used in this circuit. However, we will choose the
(uniform) width to be some power of 2. In this case,
the segment index encoder can be omitted and the
most significant bits of x are applied to the memory
address input. Since a linear approximation is still
involved, the circuit realizing c1x + c0 remains.

3. NON-UNIFORM VERSUS UNIFORM
SEGMENTATION

It is shown that, for nonuniform segmentations
Theorem 1: [5] Consider a piecewise linear approx-
imation of f on the domain [a, b] that is accurate to
within ε, using a piecewise linear segmentation. Let
f be three times continuously differentiable on [a, b].
Then, s(ε), the number of segments in an optimum
non-uniform segmentation of [a, b], satisfies the fol-



lowing asymptotic approximation:

s(ε) ∼ c√
ε

, (ε → 0), (1)

where

c =
1
4

∫ b

a

√
|f ′′(x)|dx. (2)

Further, it is shown that, for uniform segmentations
Theorem 2: [5] Consider a piecewise linear approxi-
mation of a function f(x) on the domain [a, b] with a
specified approximation error ε or less using uniform
segmentation. Let the absolute value of the second
derivative |f ′′(x)| of f(x) on the domain [a, b] be fi-
nite. Then, the number of segments s is

s ∼ c√
ε
, (3)

where

c =
(b− a)

√
|f ′′|max

4
, (4)

where |f ′′|max is the maximum of the absolute value
of f ′′(x) over the domain [a, b].

For non-uniform approximation, the number of seg-
ments s(ε) depends on the integral of the second
derivative over the interval of approximation, which is
similar to an average. The theorem requires that the
function f(x) be three-times differentiable; this im-
plies the second derivative is integrable. For uniform
approximation, the number of segments depends on
the maximum value of the second derivative. These
values can be quite different, depending on the func-
tion.

Table II shows the number of segments for 14 nu-
meric functions, as computed from Theorems 1 and 2
and for the two types of segmentation, non-uniform
(1) and uniform (3), and for four precisions, 8, 16,
32, and 64 bits. For 64 bit precision, all functions
require a very large memory size, while 32 bit preci-
sion yields feasible realizations, except for three func-
tions. For example, for

√
x, the number of segments

needed in a uniform segmentation is much larger
than in a non-uniform segmentation. This is due
to a large absolute value for the second derivative
near x = 0. Indeed, for all four precisions, uni-
form segmentation requires many more segments than
non-uniform segmentation. Similarly,

√
− ln(x) and

−(x log2 x + (1 − x) log2(1 − x)) require many more
segments using uniform segmentation than for non-
uniform segmentation.

In comparing the two types of segmentations, it is
necessary to account for the complexity of the seg-
ment index encoder. We know of no analytic way to
measure its complexity. However, experimental re-
sults [15] show that, with uniform segmentation, the

ln x,
√

x, and 1/x functions cannot be implemented
on an Altera Stratix EP1S20F484C5 FPGA, while a
non-uniform implementation can.

4. EXTENSIONS OF THE BASIC NFG

Higher Order Approximating Polynomials
A function that is close to linear is efficiently ap-

proximated by a linear function, c1x+c0. From Table
II, 1

1+e−x can be seen to be linear because of the rel-
atively few number of segments needed for both non-
uniform and uniform approximations. However, other
functions are highly non-linear. This suggests that
there is an advantage to using quadratic, cubic, and
higher order polynomials. It is known that quadratic
polynomial approximations can drastically reduce the
number of segments to as little as 4% of the segments
needed in a linear approximation [8].

A disadvantage of higher order polynomials is the
need for additional multipliers to realize the higher
powers of x. This uses significant FPGA resources
and has larger delay. Indeed, it is known [10] that
linear and quadratic polynomials yield the highest
efficiency designs.

Floating Point
We have discussed so far only fixed point repre-

sentations. This restricts the domain, as well as the
application. Nagayama, Sasao, and Butler [12] have
shown the use of edge-valued decision diagrams in the
design of floating point numeric function generators
for monotone elementary functions.

Multi-Variable Functions
A multi-variable function depends of two or more

variables. For example, the multi-variable function
f(x, y) =

√
x2 + y2 is used in converting from carte-

sian to polar coordinates. Such a function can be
realized by combining three single-variable functions,
two realizing α2 and one realizing

√
β. A more effi-

cient approach is to realize it directly using rectan-
gles to approximate a surface [9], which is analogous
to the approach described above for single-variable
functions. This approach yields a 58% memory size
reduction and a 39% delay time reduction over the
approach in which a number of single-variable func-
tions are used [9]. A further simplification can be
achieved by observing that this function is symmet-
ric, i.e. f(x, y) = f(y, x) and that, effectively only
one-half of the surface need be realized [11].

5. CONCLUDING REMARKS

There is a long history of realizing numeric
functions, like sin x by computer. Today’s FPGAs
provide large amounts of flexible logic at reasonable
cost. We propose the use of linear and higher-order



TABLE II
Number of Segments for Non-Uniform and Uniform Segmentation For 8, 16, 24, and 32 Bit Precision [5].

Function Inter- Non-Uniform Uniform
f(x) val x 8 16 32 64 8 16 32 64

2x [0, 1) 4 75 19,195 1.26× 109 6 89 22,717 1.49× 109

1/x [1, 2) 4 75 19,195 1.26× 109 8 128 32,773 2.15× 109

√
x [0, 2) 10 216 55,109 3.61× 109 8,206 5.38× 108 2.31× 1018 4.26× 1037

1/
√

x [1, 2) 3 50 12,772 8.37× 108 5 79 20,066 1.32× 109

log2(x) [1, 2) 4 75 19,228 1.26× 109 7 109 27,833 1.82× 109

ln x [1, 2) 3 63 16,062 1.05× 109 6 91 23,171 1.52× 109

sin(πx) [0, 1
2
) 5 109 27,759 1.82× 109 9 143 36,397 2.39× 109

cos(πx) (0, 1
2
) 5 109 27,759 1.82× 109 9 143 36,397 2.39× 109

tan(πx) [0, 1
4
) 4 73 18,583 1.22× 109 9 143 36,397 2.39× 109p

−ln(x) [ 1
256

, 1
4
) 10 216 55,248 3.62× 109 157 2,507 641,600 4.20× 1010

tan2(πx) + 1 [0, 1
4
) 7 153 38,927 2.55× 109 18 285 72,793 4.77× 109

−(x log2 x+ (0, 1) 16 342 87,437 5.73× 109 136 34,787 2.28× 109 9.79× 1018

(1−x) log2(1−x))
1

1+e−x [0, 1) 1 20 5,096 3.34× 108 2 28 6,989 4.58× 108

1√
2π

e
−x2

2 [0,
√

2] 3 53 13,458 8.82× 108 6 81 20,696 1.36× 109

approximations to realize general numeric functions.
One advantage of this is that a wide range of
functions can be synthesized in an architecture that
is similar for each function. We have discussed the
extension of this to floating point and multi-variable
functions. We believe that, as technology im-
proves, there will be further opportunities to research
this interesting topic. We conclude with the following:

Open Question: Does there exist an analyti-
cal quantification of the memory size needed for
the segment index encoder that depends on the
approximation error and function properties?
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